8.4: Théoreme de 1’énergie pour un solide

1) La variation de I’énergie cinetique est égale au travail des forces extérieures

2
1

Les forces intérieures ne travaillent pas. Pour chaque couple de points i, j du solide on a que
I?}-,l- = —Fl j (3eme loi de Newton), donc:

dr = dr; = d7;: dans un solide

_)... _>. _)... _>.: _>.. _>.. . _): _)—P_: .d_)zo X .
Fij-dry+ by -diy = (Fp+k) -dr = (F =k ) - dr indéformable les distances sont

maintenues
2) Siil n’y a que des forces conservatives qui travaillent, alors
I’énergie mécanique est conservee oV (7)
- ax —
F=—|ov® | = -W@
E = K + V() = constante Jy
oV ()

0z



8.4 Energie cin¢tique d’un solide

- Pour un point A quelconque du solide:

]- — — — ]' — T -
E.n, = §M’U,a21 + Mvy - (w/\Aa) + §w - (IA -w)
1 1 ——3\ 2
N.B.: pour chaque point P, A du solide 1 1 vy 2
_ —’2 — . — - —
6P=%(FA+ﬁ):ﬁA+5Aﬁ —2MvA+M'UA (w/\m)-l—22ma (w/\APa)
2

2 i 2
%Zma (w/\AP;) :%Zma JJ’Q(AP;) —((:;-AP;)]

(@ADB)2 = a’b?sin® o

Lo 2
d-b)* = a®b’ cos’ = % Zma sz‘ch‘iij (APa) - Z&Jiwj(APa)i(APa)j
= (GAD)2+ (a-b)2 = ab? a | i i,
1 —\ 2
(i(;)ij _ = 5 ;wiwj ;ma [(APQ) (51'3' — (APa)i(APa)j]
my[(GP)25;; — (GPy)(GP,); _ 1 olFNe = a (P
Z L( ) J 1] —§szWJ(IA)zJ—§W'( A'w)




8.4 Energie cin¢tique d’un solide

- Pour un point A quelconque du solide:

| P . . ? 1., /7~ Notation:
Ecinng’UA-FM’UA'(CU/\A )+§W(IAW) E.,=K
Cas particuliers
L 1., . . 1_ . . 1.
-Siv, =0 = Ecin:§w°IA°w:§w°IﬂAw6A:EIAA(‘)Z
1 1 K K*-I-lM 2
: - = S MU
-SiA=G¢ mp E.in =—Mvgz+—IA w? “ 2 ’
2 2 ¢ x _ 17 2
K _EIAG(U

Mg - (BAGG) =0
2eme théoreme de Konig



8.4: Yovo: solution 1

Quelle est la vitesse du centre de masse G quand
le yoyo est tombe¢ d’une hauteur /?

\<)V
5]

Equations du mouvement : Zy

dL; - . . d(=l;wX) o 1 a6
rFae M; = —RFX —> —RFx= Ir =lIIwa = —EmR ?x
F 1
> - a - -
ma; =mg + F — F = mg — mag G 3g

Conditions initiales (@t=0): v, =0 z=0
- Solution : ©) = art 4
e = ve(2) = J2a5z = vo(h) = |=gh
z(t) = EaGtz 3

Demo: https://auditoires-physique.epfl.ch/experiment/38



https://auditoires-physique.epfl.ch/experiment/38

8.4: Yovo: solution 2

\<>V
Sl

Le poids est conservatif et F ne travaille pas
= le probléme peut Etre résolu par la conservation de 1’€nergie :

N>

Kin +Vin = Krin + Vsin

Ki, =0 Vin =mgz(0) =0 Vein = —mgz
Par rapporta G Par rapport a 4
1 5 1 5 1 ,
Kfinzzmv(; +EIGCU = Kfin=EIAw =
1 1/1 Va2 3 1/1 ven2 3

— Zmp2 2 Zmp2 | (ZE) = 04,2 _—[Z..,p2 2\ (Z6\ _ 2. 2

—vaG+2<2mR>(R) —4va 2<2mR +mR>(R) 4va
3 4
vaé—mgz=0 = vg(h) = ggh



8.4-8.5: Glissement vs. Roulement

A quelle vitesse les deux spheres arrivent au fond de la pente de longueur L?

La sphere qui glisse descende
avec une accelération

a; = gsSina

Aot
= =—qa
sina 29
Vg = aGt
Vg = ZLClG =

J2Lgsina =/2gh

sphere qui roule (sans glisser):
théoreme du moment cinétique appligué en A

7
Ip = Ig; + mR* = —mR?

‘ 5
- 2
dL, ag (I, = =mR?)
A= _Laoz=-1,—>2 Gz
dt 4wz AR ? >
R ( 0=0
dls _ Mext = < 0=0
dt —ngaG = —Rmgsina
\

5 10 10

aG=7gsina Ve = 2LaG=\/7Lgsina= 7gh
6



8.4-8.5: Glissement vs. Roulement

A quelle vitesse les deux spheres arrivent au fond de la pente de longueur L?

La sphere qui glisse:
-N 1 dr donc ne travaille pas
-mg est conservative

- Energie mécanique totale est
1 2
Ki =0 Kf = Eva
1

conservee:

sphere qui roule (sans glisser):

-N L d# donc ne travaille pas

- F/Tiene travaille pas parce que v, = 0
-mg est conservative

Etot = Ecin + Epor = K +V = const

N Kl=0 Vl=0 sz_mgh
Par rapport a G:

1 2
K=K* +§Mv§ (IGZ=§mR2; Ve = wR)

1 ~
K*==1I, w? 1 1 2
Ac K; Emvé + Elazwz =5 (1+ g)mvé




8.4-8.5: Glissement vs. Roulement

A guelle vitesse les deux spheres arrivent au fond de la pente de longueur L?

La sphere qui glisse:
-N 1 dr donc ne travaille pas
-mg est conservative

- Energie mécanique totale est
1 2
Ki =0 Kf = Eva
1

sphere qui roule (sans glisser):

-N L d# donc ne travaille pas

- FfTicne travaille pas parce que v, = 0
- mg est conservative

conservée: Eyor = Ecip + Epor = K +V = const
Ki=0 V,=0 Vg=—mgh
Par rapport a A: v, = 0 7
PP 3 ZA Iy = Ig; + mR* = ZmR*
Kf = EIAACU )
(I, = ngz; ve = wR)
7

mvé —mgh =0

) v =.10/7gh :

10



8.6: Dynamique du solide avec axe fixe

Quand un axe de rotation A est fixe (et
qu’on ne s’intéresse pas aux forces et
moments qui maintiennent cet axe fixe), il
est utile de projeter le theoreme du
moment cinétique sur cet axe:

- Pour tout point O
sur I’axe A de direction @i

d = —
— LA = Mext
dat~ ¢ 0
= 2 (Lo-a) = Mg -a
a\° 7)o

> — (Iaw) =) ('F’a A F’;’“) @

a1

= Iai =Y (Fau AFE) -

(0%
ou 7y | et F, | sont les composantes

de 7, et F** perpendiculaires & 4

Fon NES et 7y 1 A EZT sont perpendiculaire & @

Ex.: pendule physique = solide soumis a la pesanteur et
libre de osciller autour d’un axe fixe horizontal

Lo = (O—G)/\mg’) = (O—P)/\mg’) -1+ (P—G)/\mg)) 7

I\ = (ﬁ/\mﬁ) -1l = —Lmg sin¢

. moal Iy =I5, +md? =
¢+ sing =0 1 y )
I 12m(a + c%) + mL
pendule mathématique: ¢ o g “in ¢
toute la masse m T L

esten G (I, = mL?)



8.6: Dynamique du solide avec axe fixe

Conservation €énergie mécanique

V = —mglL cos ¢

1 1 1

K=-mvé+=I;,0*= EmLsz + EIG,uw

2 21
= E (mLz + IG,u)(l)z

1
5 (mL? + I, )w? — mgL cos ¢ = cte

On dérive par rapport a ¢ (w(t) = ¢(t))

(mL2 + 15, )pd + mgLsing d =0

. L
¢ + sing =0

Demo:https://auditoires-physique.epfl.ch/experiment/65

2

Théoréme du moment cinetique

Lo = (O_G)/\mj) U= (W’)Amj) U+ (P_G)/\mﬁ) 7

I = (P_G>/\m§) -l = —Lmgsing

Iy =I5, +md? =
1

—m(a? + ¢?) + mL?

L
sing = 0 T

b+

A

10


https://auditoires-physique.epfl.ch/experiment/65

8.6: Calcul du centre de percussion

Pendule physique interrompu dans sa course:

- Une barre de longueur L et masse M tourne autour d’un axe fixe
perpendiculaire a la feuille et passant par le point O a I’extrémité
de la barre:

- Justeavantlechoc (t =0): v; = wd,

- Juste apres le choc (t = At): v =0,w = 0 (point G fixe)

- A quelle distance D de O il faut appliquer la buttée pour que la
barre s'arréte sans avoir de extra forces appliquées en 0?

La force appliquée par la buttée ainsi que la durée du choc sont
inconnus, mais on peut €crire:

At
At _
AP, = 0 — Mvg = j —F(t)dt Mvg = JO F(t)dt

0 # # lcw=d Mv; =d Mwd

At , At ‘
ALg, =0—-Il;w = —d’j F(t)dt [cw=4d jo F(t)dt :
: I = d'dM = Ed’M

1 L L 2
o= M2 =-d'M — d'=2 =) D=d+d =31

Demo: https://auditoires-physique.epfl.ch/experiment/88 11



https://auditoires-physique.epfl.ch/experiment/88

8.6: Calcul du centre de percussion

Solide libre de tourner autour force exercée par le clou
d’un axe fixe passant par O sur le marteau

Centre de percussion:

. . ‘#

- point O’ sur la droite OG tel qu’un choc aucune force nécessaire

(percussion) appliqué en ce point en O pour garder le point

. . . ) O fixe
(perpendiculairement a OG) n’engendre aucune
réaction (répercussion) de I’axe de rotation sur % 0
. !/
le solide o ¢,l0
marteau
. clou
Exemples et applications: -I-

- Marteau

- ou le tenir ?
- Raquette de tennis, batte de baseball,

- ou frapper la balle ? gonds
- Butée de porte

- ou la placer ?

butée placee au centre de percussion:
aucune force appliquée sur les gonds
(charnieres)
12



8.7: Rotation autour d’un axe fixe

- Toupie symétrique avec un point fixe:

- Le moment du poids par rapport au point fixe C est constamment perpendiculaire au moment
cinétique = la norme du moment cinétique reste constante: L, = Iy@ = [ywé,

- L’axe de rotation propre a un mouvement de précession autour de 1’axe vertical avec vitesse
angulaire €

. dL; . dé

= Iy —2
R T

- Note: on a négligé le moment cinétique cause par la rotation Q
Le=I-(B+Q) =1 & = L,wé,)! valable si Q < ®

:IA(J)g_i/\éA =§AZC

CG mgsing = QL. sing

CGm CGm

LC IACU

La vitesse de précession est inversement proportionnelle
a la vitesse de rotation propre de la tupie \

- Cas génceral: ¢ n’est pas constant mais oscille entre

deux extrémes (mouvement de nutation)

Demo:https://auditoires-physique.epfl.ch/experiment/42 13



https://auditoires-physique.epfl.ch/experiment/42

8.6 Pendule physique tournant: angle d’équilibre

Rotation uniforme autour d’un axe vertical fixe passant par O

Dans repeére d’inertie Gé,é,é
1%2%3
1

W = wsinaé; — wcosa é, EmL2 0 0
L. 1 ;= o o o0
Le=1I; @ =-—ml?wsinaé, ¢
. 12 0 0 —mi?
dL¢ AT 1 12002 s )6 12
—=w = —mL°w* sina cosa)é
dt “7 12 :
Théoreme du moment cinétique :
dL; — - L L o
ek GOAT = ETSIH(CK —f)é; = ET(smacos,B — cosa sinf3)é;
Théoréme du centre de masse :
T cosf =mg
mi; =mg+T = L
G g Tsinﬂ=mw2§sina
1 2 2 . L . 2L .
SmLfw®sinacosa =~ (mgsina — cosa mw* - sin a)
1 L 3

§L2w2 cosa =g



https://auditoires-physique.epfl.ch/experiment/91/effet-gyroscopique-a-vitesse-de-rotation-faible-pendule-dansermet

8.6 Pendule physique tournant (version alternative)

- Rotation uniforme autour d’un axe vertical fixe passant par O
- Dans repere d’inertie Oé, é,é;
- Par la formule de Steiner

L 0 O ml” + mL” 0 0
o 4 12 4
0 O L 0 0 ml” + ml”
4 12 4

w = wsinaé; — wcosaé,

-~ . _  ml* ml*
L0=10-w=(12 + Jw sin a é;
dZO_ AT mL2+mL2 , X
7 =Y 0—(12 2 Jw* sin a cos a é;

- Théoreme du moment cinétique :

dZO_O_G> —>_L . A

7 = 0Gamg =omgsinaés

L mL2+mL2 , - mL?
Z‘rngsma—(12 2 Jw*sina cosa = 3 @ sin @ cos a

o

/
4
7
/

cosd = z-——~

=

\,
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