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8.4: Théorème de l’énergie pour un solide

1) La variation de l’énergie cinétique est égale au travail des forces extérieures

Les forces intérieures ne travaillent pas. Pour chaque couple de points i, j du solide on a que 

Ԧ𝐹𝑗,𝑖 = − Ԧ𝐹𝑖,𝑗 (3eme loi de Newton), donc:

Ԧ𝐹𝑖,𝑗 ∙ 𝑑 Ԧ𝑟𝑖 + Ԧ𝐹𝑗,𝑖 ∙ 𝑑 Ԧ𝑟𝑗 = ( Ԧ𝐹𝑖,𝑗+ Ԧ𝐹𝑗,𝑖) ∙ 𝑑 Ԧ𝑟 = ( Ԧ𝐹𝑖,𝑗− Ԧ𝐹𝑖,𝑗) ∙ 𝑑 Ԧ𝑟 = 0
𝑑Ԧ𝑟 = 𝑑Ԧ𝑟𝑖 = 𝑑Ԧ𝑟𝑗: dans un solide 

indéformable les distances sont 

maintenues

2) Si il n’y a que des forces conservatives qui travaillent, alors 

l’énergie mécanique est conservée

𝑊12 = න
1

2

Ԧ𝐹𝑒𝑥𝑡 · 𝑑 Ԧ𝑟 = 𝐾2 − 𝐾1

Ԧ𝐹 = −

𝜕𝑉 Ԧ𝑟
𝜕𝑥

𝜕𝑉 Ԧ𝑟
𝜕𝑦

𝜕𝑉 Ԧ𝑟
𝜕𝑧

= −∇𝑉 Ԧ𝑟



• Pour un point 𝐴 quelconque du solide:
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8.4 Energie cinétique d’un solide

N.B.: pour chaque point P, A du solide

Ԧ𝑣𝑃 =
𝑑

𝑑𝑡
Ԧ𝑟𝐴 + 𝐴𝑃 = Ԧ𝑣𝐴 + 𝜔  𝐴𝑃

(ሚ𝐼𝐺)𝑖𝑗 =

෍

𝛼

𝑚𝛼[(𝐺𝑃𝛼)
2𝛿𝑖𝑗 − 𝐺𝑃𝛼 𝑖 𝐺𝑃𝛼 𝑗]



• Pour un point 𝐴 quelconque du solide:
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8.4 Energie cinétique d’un solide

- Si Ԧ𝑣𝐴 = 0 𝐸𝑐𝑖𝑛 =
1

2
𝜔 ∙ ሚ𝐼𝐴 ∙ 𝜔 =

1

2
𝜔 ∙ ሚ𝐼∆𝐴𝜔 Ƹ𝑒∆ =

1

2
ሚ𝐼∆𝐴𝜔

2

- Si 𝐴 = 𝐺 𝐸𝑐𝑖𝑛 =
1

2
𝑀𝑣𝑔

2 +
1

2
ሚ𝐼∆𝐺𝜔

2

Notation:

𝐸𝑐𝑖𝑛 = 𝐾

𝐾 = 𝐾∗ +
1

2
𝑀𝑣𝐺

2

𝐾∗ =
1

2
ሚ𝐼∆𝐺𝜔

2

2eme théorème de König

Cas particuliers

𝑀 Ԧ𝑣𝐺 ∙ 𝜔 ∧ 𝐺𝐺 = 0



• Equations du mouvement :

• Conditions initiales (à t = 0) :   𝑣𝐺 = 0 𝑧 = 0

• Solution : 

8.4: Yoyo: solution 1

𝑚 Ԧ𝑎𝐺 = 𝑚 Ԧ𝑔 + Ԧ𝐹

𝑑𝐿𝐺
𝑑𝑡

= 𝑀𝐺 = −𝑅𝐹 ො𝑥

A

fil

G

R

Ƹ𝑧

ො𝑦
ො𝑥

−𝑅𝐹 ො𝑥 =
𝑑(−𝐼𝐺𝜔ො𝑥)

𝑑𝑡
= −𝐼𝐺 ሶ𝜔 ො𝑥 = −

1

2
m𝑅2

𝑎𝐺
𝑅

ො𝑥

𝐹 =
1

2
𝑚𝑎𝐺





𝑎𝐺 =
2

3
𝑔

𝑣𝐺 𝑡 = 𝑎𝐺𝑡

𝑧 𝑡 =
1

2
𝑎𝐺𝑡

2
𝑣𝐺 𝑧 = 2𝑎𝐺𝑧  𝑣𝐺 ℎ =

4

3
𝑔ℎ

Quelle est la vitesse du centre de masse G quand 

le yoyo est tombé d’une hauteur h? 


𝐹 = 𝑚𝑔 −𝑚𝑎𝐺



Demo: https://auditoires-physique.epfl.ch/experiment/38

https://auditoires-physique.epfl.ch/experiment/38
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8.4: Yoyo: solution 2

A

fil

G

R

Ƹ𝑧

ො𝑦
ො𝑥

Le poids est conservatif et Ԧ𝐹 ne travaille pas

⇒ le problème peut être résolu par la conservation de l’énergie :

𝐾𝑓𝑖𝑛 =
1

2
𝑚𝑣𝐺

2 +
1

2
𝐼𝐺𝜔

2 =

=
1

2
𝑚𝑣𝐺

2 +
1

2

1

2
𝑚𝑅2

𝑣𝐺
𝑅

2

=
3

4
𝑚𝑣𝐺

2

𝐾𝑖𝑛 + 𝑉𝑖𝑛 = 𝐾𝑓𝑖𝑛 + 𝑉𝑓𝑖𝑛

𝐾𝑖𝑛 = 0 𝑉𝑖𝑛 = 𝑚𝑔𝑧 0 = 0 𝑉𝑓𝑖𝑛 = −𝑚𝑔𝑧

3

4
𝑚𝑣𝐺

2 −𝑚𝑔𝑧 = 0  𝑣𝐺 ℎ =
4

3
𝑔ℎ

Par rapport à G Par rapport à A

𝐾𝑓𝑖𝑛 =
1

2
𝐼𝐴𝜔

2 =

=
1

2

1

2
𝑚𝑅2 +𝑚𝑅2

𝑣𝐺
𝑅

2

=
3

4
𝑚𝑣𝐺

2



6

8.4-8.5: Glissement vs. Roulement

a

A

R

ො𝑥

ො𝑦

𝜔 = −𝜔 Ƹ𝑧

Ƹ𝑧

a

A

R

ො𝑥

ො𝑦

Ƹ𝑧
Ԧ𝑎

G G

La sphère qui glisse descende 

avec une accélération 

𝑎𝐺 = 𝑔 sin 𝛼
𝐿𝐴 = 𝐼𝐴𝜔

𝐼𝐴 = 𝐼𝐺𝑧 +𝑚𝑅2 =
7

5
𝑚𝑅2

(𝐼𝐺𝑧 =
2

5
𝑚𝑅2)

𝑑𝐿𝐴
𝑑𝑡

= 𝑀𝐴
𝑒𝑥𝑡 

0 = 0
0 = 0

−
7

5
𝑚𝑅𝑎𝐺 = −𝑅𝑚𝑔 sin 𝛼

sphère qui roule (sans glisser): 

théorème du moment cinétique appliqué en A

𝑎𝐺 =
5

7
𝑔 sin 𝛼

𝑑𝐿𝐴
𝑑𝑡

= −𝐼𝐴 ሶ𝜔 Ƹ𝑧 = −𝐼𝐴
𝑎𝐺
𝑅

Ƹ𝑧

𝑣𝐺 = 𝜔𝑅

h h

A quelle vitesse les deux sphères arrivent au fond de la pente de longueur L?

𝐿 =
ℎ

sin 𝛼
=
1

2
𝑎𝑔𝑡

2

𝑣𝐺 = 𝑎𝐺𝑡

𝑣𝐺 = 2𝐿𝑎𝐺 =

2𝐿𝑔 sin 𝛼 = 2𝑔ℎ

𝑣𝐺 = 2𝐿𝑎𝐺 =
10

7
𝐿𝑔 sin 𝛼 =

10

7
𝑔ℎ

𝑚 Ԧ𝑔

𝑁

Ԧ𝐹𝑓𝑟𝑖𝑐

𝑚 Ԧ𝑔

𝑁
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a

A

R

ො𝑥

ො𝑦

𝜔 = −𝜔 Ƹ𝑧

Ƹ𝑧

a

A

R

ො𝑥

ො𝑦

Ƹ𝑧
Ԧ𝑎

G G

La sphère qui glisse:

- 𝑁 ⊥ 𝑑Ԧ𝑟 donc ne travaille pas

- 𝑚 Ԧ𝑔 est conservative

sphère qui roule (sans glisser): 

- 𝑁 ⊥ 𝑑Ԧ𝑟 donc ne travaille pas

- Ԧ𝐹𝑓𝑟𝑖𝑐ne travaille pas parce que 𝑣𝐴 = 0
- 𝑚 Ԧ𝑔 est conservative

h h

A quelle vitesse les deux sphères arrivent au fond de la pente de longueur L?

𝑚 Ԧ𝑔

𝑁

Ԧ𝐹𝑓𝑟𝑖𝑐

𝑚 Ԧ𝑔

𝑁

𝐸𝑡𝑜𝑡 = 𝐸𝑐𝑖𝑛 + 𝐸𝑝𝑜𝑡 = 𝐾 + 𝑉 = 𝑐𝑜𝑛𝑠𝑡• Energie mécanique totale est conservée:

𝐾𝑖 = 0

𝑉𝑖 = 0 𝑉𝑓 = −𝑚𝑔ℎ

𝐾𝑓 =
1

2
𝑚𝑣𝐺

2

1

2
𝑚𝑣𝐺

2 −𝑚𝑔ℎ = 0

𝑣𝐺 = 2𝑔ℎ

𝐾𝑖 = 0 𝑉𝑖 = 0 𝑉𝑓 = −𝑚𝑔ℎ

𝐾𝑓 =
1

2
𝑚𝑣𝐺

2 +
1

2
𝐼𝐺𝑧𝜔

2 =
1

2
(1 +

2

5
)𝑚𝑣𝐺

2

𝐾 = 𝐾∗ +
1

2
𝑀𝑣𝐺

2

𝐾∗ =
1

2
ሚ𝐼∆𝐺𝜔

2

(𝐼𝐺𝑧 =
2

5
𝑚𝑅2; 𝑣𝐺 = 𝜔𝑅)

7

10
𝑚𝑣𝐺

2 −𝑚𝑔ℎ = 0 𝑣𝐺 = 10/7𝑔ℎ

Par rapport à G:

8.4-8.5: Glissement vs. Roulement
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a

A

R

ො𝑥

ො𝑦

𝜔 = −𝜔 Ƹ𝑧

Ƹ𝑧

a

A

R

ො𝑥

ො𝑦

Ƹ𝑧
Ԧ𝑎

G G

h h

A quelle vitesse les deux sphères arrivent au fond de la pente de longueur L?

𝑚 Ԧ𝑔

𝑁

Ԧ𝐹𝑓𝑟𝑖𝑐

𝑚 Ԧ𝑔

𝑁

𝐸𝑡𝑜𝑡 = 𝐸𝑐𝑖𝑛 + 𝐸𝑝𝑜𝑡 = 𝐾 + 𝑉 = 𝑐𝑜𝑛𝑠𝑡• Energie mécanique totale est conservée:

𝐾𝑖 = 0

𝑉𝑖 = 0 𝑉𝑓 = −𝑚𝑔ℎ

𝐾𝑓 =
1

2
𝑚𝑣𝐺

2

1

2
𝑚𝑣𝐺

2 −𝑚𝑔ℎ = 0

𝑣𝐺 = 2𝑔ℎ

𝐾𝑖 = 0 𝑉𝑖 = 0 𝑉𝑓 = −𝑚𝑔ℎ

(𝐼𝐺𝑧 =
2

5
𝑚𝑅2; 𝑣𝐺 = 𝜔𝑅)

7

10
𝑚𝑣𝐺

2 −𝑚𝑔ℎ = 0 𝑣𝐺 = 10/7𝑔ℎ

Par rapport à A: Ԧ𝑣𝐴 = 0

𝐾𝑓 =
1

2
ሚ𝐼∆𝐴𝜔

2
𝐼𝐴 = 𝐼𝐺𝑧 +𝑚𝑅2 =

7

5
𝑚𝑅2

La sphère qui glisse:

- 𝑁 ⊥ 𝑑Ԧ𝑟 donc ne travaille pas

- 𝑚 Ԧ𝑔 est conservative

sphère qui roule (sans glisser): 

- 𝑁 ⊥ 𝑑Ԧ𝑟 donc ne travaille pas

- Ԧ𝐹𝑓𝑟𝑖𝑐ne travaille pas parce que 𝑣𝐴 = 0
- 𝑚 Ԧ𝑔 est conservative

8.4-8.5: Glissement vs. Roulement



• Ex.: pendule physique = solide soumis à la pesanteur et 
libre de osciller autour d’un axe fixe horizontal

• pendule mathématique:

toute la masse 𝑚
est en 𝐺 (𝐼Δ = 𝑚𝐿2)

• Quand un axe de rotation Δ est fixe (et 

qu’on ne s’intéresse pas aux forces et 

moments qui maintiennent cet axe fixe), il 

est utile de projeter le théorème du 

moment cinétique sur cet axe:

- Pour tout point 𝑂
sur l’axe Δ de direction ො𝑢

9

8.6: Dynamique du solide avec axe fixe

OL

G

𝑚 Ԧ𝑔

𝐼∆ ሶ𝜔 = 𝑂𝐺𝑚 Ԧ𝑔 · ො𝑢 = 𝑂𝑃𝑚 Ԧ𝑔 · ො𝑢 + 𝑃𝐺𝑚 Ԧ𝑔 · ො𝑢

𝐼∆ ሷ = 𝑃𝐺𝑚 Ԧ𝑔 · ො𝑢 = −𝐿𝑚𝑔 sin 

ሷ+
𝑚𝑔𝐿

𝐼∆
sin  = 0

a
b

c

Ԧ𝑟𝛼,∥ ∧ Ԧ𝐹𝛼,⊥
𝑒𝑥𝑡 et Ԧ𝑟𝛼,⊥ ∧ Ԧ𝐹𝛼,∥

𝑒𝑥𝑡 sont perpendiculaire à ො𝑢

P

𝑑𝐿𝑂
𝑑𝑡

= 𝑀𝑂
𝑒𝑥𝑡

𝐼∆ = 𝐼𝐺,𝑢 +𝑚𝑑2 =
1

12
𝑚 𝑎2 + 𝑐2 +𝑚𝐿2
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8.6: Dynamique du solide avec axe fixe

OL

G

𝑚 Ԧ𝑔

𝐼∆ ሶ𝜔 = 𝑂𝐺𝑚 Ԧ𝑔 · ො𝑢 = 𝑂𝑃𝑚 Ԧ𝑔 · ො𝑢 + 𝑃𝐺𝑚 Ԧ𝑔 · ො𝑢

𝐼∆ ሷ = 𝑃𝐺𝑚 Ԧ𝑔 · ො𝑢 = −𝐿𝑚𝑔 sin 

a
b

c

P

Conservation énergie mécanique

𝑉 = −𝑚𝑔𝐿 cos𝜙

𝐾 =
1

2
𝑚𝑣𝐺

2 +
1

2
𝐼𝐺,𝑢𝜔

2 =
1

2
𝑚𝐿2𝜔2 +

1

2
𝐼𝐺,𝑢𝜔

2

=
1

2
(𝑚𝐿2 + 𝐼𝐺,𝑢)𝜔

2

1

2
𝑚𝐿2 + 𝐼𝐺,𝑢 𝜔2 −𝑚𝑔𝐿 cos𝜙 = 𝑐𝑡𝑒

𝑚𝐿2 + 𝐼𝐺,𝑢 ሶ𝜙 ሷ𝜙 + 𝑚𝑔𝐿 sin𝜙 ሶ𝜙 = 0

Théoréme du moment cinetique

Demo:https://auditoires-physique.epfl.ch/experiment/65

On dérive par rapport à t (𝜔 𝑡 = ሶ𝜙 𝑡 )

𝐼∆ = 𝐼𝐺,𝑢 +𝑚𝑑2 =
1

12
𝑚 𝑎2 + 𝑐2 +𝑚𝐿2ሷ+

𝑚𝑔𝐿

𝐼∆
sin  = 0

ሷ+
𝑚𝑔𝐿

𝐼∆
sin  = 0

https://auditoires-physique.epfl.ch/experiment/65


• Pendule physique interrompu dans sa course:

- Une barre de longueur L et masse M tourne autour d’un axe fixe 

perpendiculaire à la feuille et passant par le point 𝑂 à l’extrémité 

de la barre:

- Juste avant le choc (𝑡 = 0) : 𝑣𝐺 = 𝜔𝑑, 

- Juste après le choc (𝑡 = Δ𝑡) : 𝑣𝐺 = 0,𝜔 = 0 (point 𝐺 fixe)

- A quelle distance D de O il faut appliquer la buttée pour que la 

barre s'arrête sans avoir de extra forces appliquées en 𝑂?

La force appliquée par la buttée ainsi que la durée du choc sont 

inconnus, mais on peut écrire:
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8.6: Calcul du centre de percussion

Demo: https://auditoires-physique.epfl.ch/experiment/88

𝑂′

𝐺

𝑂

L

𝑑 = 𝐿/2

𝑑′

F(t)

∆𝑝𝑥 = 0 −𝑀𝑣𝐺 = න
0

∆𝑡

−𝐹 𝑡 𝑑𝑡
𝑀𝑣𝐺 = න

0

∆𝑡

𝐹 𝑡 𝑑𝑡

∆𝐿𝐺,𝑧 = 0 − 𝐼𝐺𝜔 = −𝑑′න
0

∆𝑡

𝐹 𝑡 𝑑𝑡 𝐼𝐺𝜔 = 𝑑′න
0

∆𝑡

𝐹 𝑡 𝑑𝑡

ො𝑥

ො𝑦

Ƹ𝑧

𝐼𝐺𝜔 = 𝑑′𝑀𝑣𝐺 = 𝑑′𝑀𝜔𝑑

𝐼𝐺 = 𝑑′𝑑𝑀 =
𝐿

2
𝑑′𝑀

𝐼𝐺 =
1

12
𝑀𝐿2 =

𝐿

2
𝑑′𝑀 𝑑′ =

𝐿

6

D

𝐷 = 𝑑 + 𝑑′ =
2

3
𝐿

https://auditoires-physique.epfl.ch/experiment/88


• Solide libre de tourner autour 

d’un axe fixe passant par 𝑂

• Centre de percussion:

- point 𝑂′ sur la droite 𝑂𝐺 tel qu’un choc 

(percussion) appliqué en ce point 

(perpendiculairement à 𝑂𝐺) n’engendre aucune 

réaction (répercussion) de l’axe de rotation sur 

le solide

• Exemples et applications:

- Marteau 

- où le tenir ?

- Raquette de tennis, batte de baseball, 

- où frapper la balle ?

- Butée de porte

- où la placer ?

12

butée placée au centre de percussion: 
aucune force appliquée sur les gonds 
(charnières)

𝑂 𝑂′𝐺

marteau

clou

force exercée par le clou 
sur le marteau

aucune force nécessaire 
en 𝑂 pour garder le point 
𝑂 fixe

𝑂′𝐺
porte

mur

𝑂 butée

gonds

8.6: Calcul du centre de percussion



• Toupie symétrique avec un point fixe:

- Le moment du poids par rapport au point fixe C est constamment perpendiculaire au moment 

cinétique ⇒ la norme du moment cinétique reste constante: 𝐿𝐶 = 𝐼∆𝜔 = 𝐼∆ω Ƹ𝑒∆
- L’axe de rotation propre a un mouvement de précession autour de l’axe vertical avec vitesse 

angulaire Ω

- Cas général: f n’est pas constant mais oscille entre 

deux extrêmes (mouvement de nutation)
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8.7: Rotation autour d’un axe fixe

𝑀𝐶 =
𝑑𝐿𝐶
𝑑𝑡

= 𝐼∆ω
𝑑 Ƹ𝑒∆
𝑑𝑡

= 𝐼∆ω  Ƹ𝑒∆ =   𝐿𝐶

𝐶𝐺 𝑚𝑔 sin  = 𝐿𝐶 sin 

 =
𝐶𝐺 𝑚𝑔

𝐿𝐶
=
𝐶𝐺 𝑚𝑔

𝐼∆𝜔

La vitesse de précession est inversement proportionnelle 

à la vitesse de rotation propre de la tupie 

- Note: on a négligé le moment cinétique causé par la rotation Ω 

(𝐿𝐶 = ሚ𝐼𝐶 ∙ 𝜔 + Ω ≅ ሚ𝐼𝐶 ∙ 𝜔 = 𝐼∆ω Ƹ𝑒∆) !         valable si Ω ≪ w

𝑚 Ԧ𝑔

𝑀𝐶 = 𝐶𝐺 𝑚 Ԧ𝑔 (⏊𝐿𝐶)

G

C

Ƹ𝑒∆

Ƹ𝑒𝑧

Demo:https://auditoires-physique.epfl.ch/experiment/42

https://auditoires-physique.epfl.ch/experiment/42


• Rotation uniforme autour d’un axe vertical fixe passant par 𝑂

• Dans repère d’inertie 𝐺 Ƹ𝑒1 Ƹ𝑒2 Ƹ𝑒3

• Théorème du moment cinétique :

• Théorème du centre de masse :
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8.6 Pendule physique tournant: angle d’équilibre

démo

𝜔 = 𝜔 sin 𝛼 Ƹ𝑒1 − ωcos𝛼 Ƹ𝑒2

𝐿𝐺 = ሚ𝐼𝐺 · 𝜔 =
1

12
𝑚𝐿2𝜔 sin 𝛼 Ƹ𝑒1

𝑑𝐿𝐺
𝑑𝑡

= 𝜔 ∧ 𝐿𝐺 =
1

12
𝑚𝐿2𝜔2 sin 𝛼 cos 𝛼) Ƹ𝑒3

𝑑𝐿𝐺
𝑑𝑡

= 𝐺𝑂𝑇 =
𝐿

2
𝑇 sin(𝛼 − 𝛽) Ƹ𝑒3 =

𝐿

2
𝑇(sin 𝛼 cos𝛽 − cos 𝛼 sin 𝛽) Ƹ𝑒3

𝑚 Ԧ𝑎𝐺 = 𝑚 Ԧ𝑔 + 𝑇  ቐ

𝑇 cos 𝛽 = 𝑚𝑔

𝑇 sin 𝛽 = 𝑚𝜔2
𝐿

2
sin 𝛼

1

12
𝑚𝐿2𝜔2 sin 𝛼 cos 𝛼 =

𝐿

2
(𝑚𝑔 sin 𝛼 − cos 𝛼 𝑚𝜔2 𝐿

2
sin 𝛼)

cos 𝛼 =
3

2

𝑔

𝐿𝜔2

ሚ𝐼𝐺 =

1

12
𝑚𝐿2 0 0

0 0 0

0 0
1

12
𝑚𝐿2

a

O

G

b

L/2

𝑚 Ԧ𝑔

a

a

1

3
𝐿2𝜔2 cos 𝛼 =

𝐿

2
𝑔

https://auditoires-physique.epfl.ch/experiment/91/effet-gyroscopique-a-vitesse-de-rotation-faible-pendule-dansermet


• Rotation uniforme autour d’un axe vertical fixe passant par 𝑂

• Dans repère d’inertie O Ƹ𝑒1 Ƹ𝑒2 Ƹ𝑒3

• Par la formule de Steiner

• Théorème du moment cinétique :
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8.6 Pendule physique tournant (version alternative)

a

O

G

b

L/2

𝑚 Ԧ𝑔

a

ሚ𝐼𝑂 = ሚ𝐼𝐺 +𝑚

𝐿2

4
0 0

0 0 0

0 0
𝐿2

4

=

𝑚𝐿2

12
+
𝑚𝐿2

4
0 0

0 0 0

0 0
𝑚𝐿2

12
+
𝑚𝐿2

4

𝜔 = 𝜔 sin 𝛼 Ƹ𝑒1 − ωcos𝛼 Ƹ𝑒2

𝐿𝑂 = ሚ𝐼𝑂 · 𝜔 = (
𝑚𝐿2

12
+
𝑚𝐿2

4
)𝜔 sin 𝛼 Ƹ𝑒1

𝑑𝐿𝑂
𝑑𝑡

= 𝜔 ∧ 𝐿𝑂= (
𝑚𝐿2

12
+
𝑚𝐿2

4
)𝜔2 sin 𝛼 cos𝛼 Ƹ𝑒3

𝑑𝐿𝑂
𝑑𝑡

= 𝑂𝐺𝑚 Ԧ𝑔 =
𝐿

2
𝑚𝑔 sin 𝛼 Ƹ𝑒3

cos 𝛼 =
3

2

𝑔

𝐿𝜔2
𝐿

2
𝑚𝑔 sin 𝛼 = (

𝑚𝐿2

12
+
𝑚𝐿2

4
)𝜔2 sin 𝛼 cos𝛼 =

𝑚𝐿2

3
𝜔2 sin 𝛼 cos𝛼


